Formation of an Asymmetric Rh–Hg–Rh Bridged Complex

ALAN R. SANGER

Alberta Research Council, 11315-87 Avenue, Edmonton, Alta. T6G 2C2, Canada Received July 23, 1984

Abstract

Reaction of $HgCl_2$ with $[Rh_2(\mu-Cl)(CO)_2(\mu-CO)(\mu-dppm)_2]Cl$ (dppm = bis(diphenylphosphino)methane) gives $[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu-dppm)_2]$ in which only one Rh is oxidised by insertion into a Hg-Cl bond, and which consequently contains an unusual asymmetric Rh-Hg-Rh bridge.

Introduction

The reactions of mercury(II) halides with complexes of the transition metals are various, and include insertion of the metal centre into a mercuryhalogen bond, or formation of simple adducts in which the transition metal complex acts as a Lewis base [1]. Oxidation of *trans*-[RhCl(CO)(PR₃)₂] (PR₃ = PPh₂Et, PPh₂Prⁱ, PPh₂CH₂SPh, but not PPh₃) by HgCl₂ to form [RhCl₂(HgCl)(CO)(PR₃)₂] has been demonstrated [2]. Recently it was reported [3] that HgCl₂ reacts with [Rh₂(η -C₅H₅)₂(μ -CO)-(μ -dppm)] to form [Rh₂(η -C₅H₅)₂(μ -CO)(μ -dppm)-(μ -HgCl₂)], 1. A symmetric Rh-Hg-Rh bridge is formed as each electron-rich Rh centre acts as a Lewis base. Herein I report the formation of a complex containing an unusual and, to date, unique asymmetric Rh-Hg-Rh bridge.

Experimental

Preparation of $[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu-dppm)_2]$

To a dichloromethane solution of $[Rh_2(\mu-Cl)-(CO)_2(\mu-CO)(\mu-dppm)_2]Cl (0.455 mmol)$, prepared in situ, was added HgCl₂ (0.117 g, 0.431 mmol), which rapidly dissolved with concurrent formation of a red solution. The solvent slowly evaporated under a stream of CO to leave a dark, glassy product. The residue was washed with alcohol, then ether, and then extracted with dichloromethane (30 mL). The dichloromethane solution was diluted with ethanol (20 mL), and then placed under a stream of N₂. When the major proportion of dichloromethane had evaporated red-brown crystals of $[Rh_2Cl_3(\mu-$

0020-1693/85/\$3.30

HgCl)(CO)₂(dppm)₂] were separated, and dried under vacuum. All attempts to prepare crystals suitable for X-ray crystallography have yielded only microcrystals or gross multiples. Analysis found: C, 44.4; H, 3.2; Cl, 10.1%; M, 1337. Calculated: C, 45.5; H, 3.2; Cl, 10.3%; M, 1373.

Reaction of $[Rh_2Cl_3(\mu-HgCl)/(CO)_2(\mu-dppm)_2]$ with CO

Recrystallization of the above product from dichloromethane/ethanol under a stream of CO gave a material which appeared to be (IR spectrum) the same product, but with lesser amounts of an impurity containing a bridging CO ligand. However, a solution of the same complex in dichloromethane- d_2 under an atmosphere of CO exhibited ³¹P and ¹³C NMR resonances due to both starting material and a carbonyl-bridged dirhodium complex containing a Rh–Rh bond [4].

Results and Discussion

Reaction of CO with $[Rh_2Cl_2(CO)_2(\mu-dppm)_2]$, in which each Rh centre has 16 electrons, gives $[Rh_2(\mu-Cl)(CO)_2(\mu-CO)(\mu-dppm)_2]Cl, 2$, in which each Rh centre has 18 electrons [4]. The reaction is reversible. Reaction of an equimolar amount of HgCl₂ with a solution of 2 in CH₂Cl₂ under an atmosphere of CO rapidly gave a dark red solution of crude $[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu-dppm)_2]$, 3. Recrystallization of 3 from CH₂Cl₂/EtOH (5:1) under a stream of N₂ gave pure 3 as deep red-brown microcrystals. Complex 3, which is not an electrolyte, is assigned the formula above and the structure shown in Fig. 1 on the basis of elemental analyses, molecular weight, and the following spectroscopic evidence.

The IR spectrum exhibits bands at 2068 and 2026 cm⁻¹ assigned to the carbonyl ligands bonded to Rh_B and Rh_A respectively. Weak bands (200 to 400 cm⁻¹) are observed at 372, 355, 304 and 244 cm⁻¹, and are assigned as metal-ligand stretches. The ³¹P NMR spectrum of 3 (Fig. 2; -50 °C, CD₂Cl₂, ¹H decoupled) shows two doublets of triplets, each

© Elsevier Sequoia/Printed in Switzerland

Fig. 1. Structure of $[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu-dppm)_2]$, 3 (P^P = dppm).

with distinctive satellites due to coupling to ¹⁹⁹Hg. The triplet structure (J = 10 Hz) is due to coupling between P_A and P_B . The value of ${}^{1}J_{RhAPA}$ (106) Hz) is lower than corresponding values for trans- $[RhCl(CO)(PR_3)_2]$ [5], and is consistent with the proposed interaction between RhA and Hg. The value for ${}^{1}J_{RhBPB}$ (83 Hz) is very similar to the corresponding parameter for [RhCl2(HgCl)(CO)- $(PR_3)_2$ [2], and confirms that oxidation of Rh_B has occurred by insertion into a Hg--Cl bond. Coupling of Hg to P_B (192 Hz) is reduced in comparison to [RhCl₂(HgCl)(CO)(PR₃)₂] [2], probably due to the interaction of Hg also with Rh_A. The value of ${}^{2}J_{HgPA}$ is even lower, consistent with the weaker interaction of Hg with RhA. It is noteworthy that the values of J_{RhAPB} and J_{RhBPA} are each so small that no coupling is observed. This is consistent with the absence of a Rh-Rh bond, in contrast to complex 1 [3].

The ¹³C NMR spectrum of a solution of the ¹³CO (90% ¹³C enriched) complex showed two distinct environments for ¹³C, each coupled to one ¹⁰³Rh and two ³¹P nuclei (δ_{CA} 189.3 ppm, ¹J_{RhACA} 79, ²J_{PACA} 14 Hz; δ_{CB} 183.8 ppm, ¹J_{RhBCB} 68, ²J_{PBCB} 10 Hz). The ³¹P NMR spectrum of this material was the same as for the ¹²CO complex, except that coupling of each ³¹P nucleus to one adjacent ¹³C nucleus was observed.

On the basis of the above evidence it is concluded that $HgCl_2$ reacts with 2 to form the 1:1 addition complex 3, that this reaction involves oxidation of only one rhodium centre by insertion into a mercury-chlorine bond, and that 3 contains an asymmetric Rh-Hg-Rh bridge of a kind previously unknown.

The ³¹P NMR spectrum of a solution prepared from 3 under an atmosphere of CO showed resonances not only due to 3, but also another predominant species. Neither crystals nor a pure solution of this latter species could be isolated. No HgCl₂ precipitated from solution under CO. The spectrum of the species formed possessed a single environment for ³¹P (δ_P 31.3 ppm; $|{}^{1}J_{RhP} + {}^{x}J_{RhP}|$, 93.4 Hz), and was second-order, resembling in character the spectrum of 2 [4]. The ${}^{13}C$ NMR spectrum was broad, overlapping with that of 3, and contained a

Fig. 2. (a) ³¹P NMR spectrum of a solution of $[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu-dppm)_2]$, 3, in CD_2Cl_2 , -50 °C, ¹H-decoupled. Chemical shifts are relative to external 85% H₃PO₄. Peaks marked by an asterisk are due to impurities. (b) Calculated positions of lines.

broad weak resonance (δ_C 208 ppm) due to a bridging ¹³CO ligand. By comparison with the properties of 1 [3], it is possible that an equilibrium mixture is established under CO, consisting of 3 and a HgCl₂- and CO-bridged complex.

Acknowledgment

It is a pleasure to acknowledge the technical assistance of Wendy Wade.

References

- 1 G. Wilkinson, F. G. A. Stone and E. W. Abel (eds.), 'Comprehensive Organometallic Chemistry, Vol. 6', Pergamon, Oxford, 1982, chap. 40-43.
- 2 A. R. Sanger, Can. J. Chem., 62, 822 (1984).
- 3 F. Faraone, S. LoSchiavo, G. Bruno and G. Bombieri, J. Chem. Soc., Chem. Commun., 6 (1984).
- 4 J. T. Mague and A. R. Sanger, Inorg. Chem., 18, 2600 (1979).
- 5 A. R. Sanger, J. Chem. Soc., Dalton Trans., 120 (1977).