Formation of an Asymmetric Rh-Hg--Rh Bridged Complex

Alberta Research Council, 1131587Avenue, Edmonton, Alta. T6G 2C2, Canada

Alberta Research Council, 11315-87 Avenue, Edmonton, Alta, T6G 2C2, Canada Received July 23, 1984

Abstract

Reaction of HgCl₂ with $\left[\text{Rh}_2(\mu\text{-Cl})(\text{CO})_2(\mu\text{-}$ CO)(μ -dppm)₂]Cl (dppm = bis(diphenylphosphino)methane) gives $\left[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu\text{-dppm})_2\right]$ in which only one Rh is oxidised by insertion into a Hg-Cl bond, and which consequently contains an unusual asymmetric Rh-Hg-Rh bridge.

Introduction

The reactions of mercury (II) halides with complexes of the transition metals are various, and include insertion of the metal centre into a mercuryhalogen bond, or formation of simple adducts in which the transition metal complex acts as a Lewis base [1]. Oxidation of trans-[RhCl(CO)(PR₃)₂] $PR_3 = PPh_2Et$ PPh_2Pr^i , PPh_2CH_2SPh , but no Ph_3) by HgCl₂ to form $[RhCl_2(HgCl)(CO)(PR_3)_2]$ has been demonstrated $[2]$. Recently it was reported [3] that HgCl₂ reacts with $\left[Rh_2(\eta-C_5H_5)_{2}(\mu-C_0)\right]$ Results and Discussion $(\mu$ -dppm)] to form $\left[Rh_2(\eta$ -C₅H₅ $\right)_2(\mu$ -CO $)(\mu$ -dppm)- $(\mu$ -HgCl₂)], 1. A symmetric Rh--Hg--Rh bridge is formed as each electron-rich Rh centre acts as a Lewis base. Herein I report the formation of a complex containing an unusual and, to date, unique. asymmetric Rh-Hg-Rh bridge.

Experimental

Preparation of $[Rh_2Cl_3(\mu-HgCl)/(CO)_2(\mu\text{-}dppm)_2]$

To a dichloromethane solution of $\left[Rh_2(\mu\text{-}Cl)\right]$. $(CO)_2(\mu$ -CO $)(\mu$ -dppm $)_2$ Cl (0.455 mmol), prepared in situ, was added HgCl₂ (0.117 g, 0.431 mmol), which rapidly dissolved with concurrent formation of a red solution. The solvent slowly evaporated under a stream of CO to leave a dark, glassy product. The residue was washed with alcohol, then ether, and then extracted with dichloromethane (30 mL) . The dichloromethane solution was diluted with ethanol (20 mL), and then placed under a stream of N_2 . When the major proportion of dichloromethane 0020-1693/85/\$3.30

0020-1693/85/\$3.30

 $HgCl(CO)₂(dppm)₂$ were separated, and dried under vacuum. All attempts to prepare crystals suitable for X-ray crystallography have yielded only microcrystals or gross multiples. Analysis found: C, 44.4; H, 3.2; Cl, 10.1%; M, 1337. Calculated: C, 45.5; H, 3.2; Cl, 10.3%; M, 1373.

Reaction of $\{Rh_2Cl_3(\mu\text{-}HgCl)/(CO)_2(\mu\text{-}dppm)_2\}$ *with* CO

Recrystallization of the above product from dichloromethane/ethanol under a stream of CO gave a material which appeared to be $(IR$ spectrum) the same product, but with lesser amounts of an impurity containing a bridging CO ligand. However, a solution of the same complex in dichloromethane d_2 under an atmosphere of CO exhibited ^{31}P and 13 C NMR resonances due to both starting material and a carbonyl-bridged dirhodium complex containing a $Rh-Rh$ bond $[4]$.

Reaction of CO with $[\text{Rh}_2 \text{Cl}_2(\text{CO})_2(\mu\text{-dppm})_2]$, in which each Rh centre has 16 electrons, gives $\left[Rh_2(\mu\text{-Cl})(CO)_2(\mu\text{-CO})(\mu\text{-dppm})_2\right]Cl$, 2, in which each Rh centre has 18 electrons $[4]$. The reaction is reversible. Reaction of an equimolar amount of HgCl₂ with a solution of 2 in CH_2Cl_2 under an atmosphere of CO rapidly gave a dark red solution of crude $\left[Rh_2Cl_3(\mu\text{-HgCl})(CO)_2(\mu\text{-dppm})_2\right],$ 3. Recrystallization of 3 from $\text{CH}_2\text{Cl}_2/\text{EtOH}$ (5:1) under a stream of N_2 gave pure 3 as deep red-brown microcrystals. Complex 3, which is not an electrolyte, is assigned the formula above and the structure shown in Fig. 1 on the basis of elemental analyses, molecular weight, and the following spectroscopic $T_{\rm C}$ spectrum exhibits bands at 2068

The IR spectrum exhibits bands at 2068 and 2026 cm⁻¹ assigned to the carbonyl ligands bonded to Rh_B and Rh_A respectively. Weak bands (200 to 400 cm^{-1}) are observed at 372, 355, 304 and 244 cm^{-1} , and are assigned as metal-ligand stretches. The ³¹P NMR spectrum of 3 (Fig. 2; -50 $^{\circ}$ C, CD₂Cl₂, ¹H decoupled) shows two doublets of triplets, each

> 0 Elsevier Sequoia/Printed in Switzerland © Elsevier Sequoia/Printed in Switzerland

 ζ . 1. Structi

with distinctive satellites due to $\frac{1}{2}$ In distinctive satellities due to coupling to \mathcal{L} Hg. The triplet structure $(J = 10 \text{ Hz})$ is due to coupling between P_A and P_B . The value of ${}^{1}J_{RhAPA}$ (106 Hz) is lower than corresponding values for *trans*- $[RhCl(CO)(PR₃)₂]$ [5], and is consistent with the proposed interaction between Rh_A and Hg. The value for ${}^{1}J_{\text{RhnPR}}$ (83 Hz) is very similar to the corresponding parameter for [RhCl₂(HgCl)(CO)- PR_3 ₂] [2], and confirms that oxidation of Rh_B has occurred by insertion into a Hg--Cl bond. Coupling of Hg to P_B (192 Hz) is reduced in comparison to $[RhCl₂(HgCl)(CO)(PR₃)₂]$ [2], probably due to the interaction of Hg also with RhA. The value of ${}^{2}J_{\text{HPA}}$ is even lower, consistent with the weaker interaction of Hg with Rh_A . It is noteworthy that
the values of J_{RhAPB} and J_{RnBPA} are each so small

at no coupling is observed. This is consistent with the absence of a $Rh-Rh$ bond, in contrast to complex 1 [3]. $\text{dist}[\mathfrak{z}].$

The \sim C NMR spectrum of a solution of the ¹³CO (90%¹³C enriched) complex showed two distinct environments for ¹³C, each coupled to stinct environments for ∞ , each coupled to $\frac{16}{10}$ Packard two ³¹P nuclei (δc_A 189.3 ppm, $Rh_A C_A$ (9, J $P_A C_A$ 14 Hz; ${}_{0}^{0}C_B$ 183.8 ppm, $Rh_{\text{B}}C_{\text{B}}$ b8, $J_{\text{P}_{\text{B}}C_{\text{B}}}$ iv Hz). The Γ P NMK spectrumthis material was the same as for the \sim CO complex, except that coupling of each $3^{1}P$ nucleus to one adjacent 13 C nucleus was observed.

On the basis of the above evidence it is concluded that HgCl₂ reacts with 2 to form the 1:1 addition complex 3, that this reaction involves oxidation of only one rhodium centre by insertion into a mercury-chlorine bond, and that 3 contains an asymmetric Rh–Hg–Rh bridge of a kind previously
unknown. σ 31P σ 31P σ 31P σ solution prepared prepared

The \mathcal{L} P NMR spectrum of a solution prepared from 3 under an atmosphere of CO showed resonances not only due to 3, but also another predominant species. Neither crystals nor a pure solution of this latter species could be isolated. No HgCl₂ precipitated from solution under CO. The spectrum of the species formed possessed a single environment for ${}^{31}P$ (δ_{P} 31.3 ppm; $|{}^{1}J_{RhP} + {}^{x}J_{RhP}$), 93.4 Hz), and was second-order, resembling in character the spectrum of 2 $[4]$. The ¹³C NMR spectrum was broad, overlapping with that of 3, and contained a

s. 2. (a) ³⁴P NMR spectrum of a solution of $\frac{Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu-dppm)_2}$, 3, in CD₂Cl₂, -50 °C, ¹H-decounted Chemi

broad weak resonance (δ_c 208 ppm) due to a bridging ¹³CO ligand. By comparison with the properties of 1 $[3]$, it is possible that an equilibrium mixture is established under CO, consisting of 3 and a HgCl₂- and CO-bridged complex.

Acknowledgment

It is a pleasure to acknowledge the technical assistance of Wendy Wade.

References

- 'Comprehensive Organometailic Chemistry, Vol. 6', Wilkinson, $F. G. A. Stone and E.$ 'Comprehensive Organometallic Chemistry, Vol. 6', Pergamon, Oxford, 1982, chap. 40-43.
- 2 A. R. Sanger, Can. J. Chem., 62, 822 (1984).
- 3 F. Faraone, S. LoSchiavo, G. Bruno and G. Bombieri, J. Chem. Soc., Chem. Commun., 6 (1984).
- 4 J. T. Mague and A. R. Sanger, *Inorg. Chem.*, 18, 2600 (1979).
- 5 A. R. Sanger, J. Chem. Soc., Dalton Trans., 120 (1977).